Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Fei Wu, ${ }^{\text {a }}$ Feng-Ping Xiao, ${ }^{\text {a }}$ Long-Fei Jin, ${ }^{\text {a* }}$ Fen-Fang Li ${ }^{\text {a }}$ and Xu-Ya Dai ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry, Central China Normal Univesity, Wuhan 430079, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail:
jlf163@public.wh.hb.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.060$
$w R$ factor $=0.178$
Data-to-parameter ratio $=8.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Ethyl l-glutamate

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{4}$, there are two independent molecules in the asymmetric unit. All bond lengths and angles in the molecules are in normal ranges. The ψ^{1} and ψ^{2} torsion angles are 159.9 (4) and $-23.4(5)^{\circ}$, respectively, in the first molecule, and the ψ^{3} and ψ^{4} torsion angles 157.7 (4) and $-26.7(5)^{\circ}$, respectively, in the second. Each of the independent molecules has a different comformation. The translationally and screw-related molecules are connected by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional network parallel to the $a c$ plane.

Comment

It has been reported that many esters of amino acids display a broad range of biological activities, e.g. as anti-oxidants, bactericides, food additives and cosmetics (Wang \& Li, 1995); furthermore, these esters are useful ligands. As part of an ongoing study (Wu et al., 2005), we report here the crystal structure of the title compound, (I).

(I)

In the crystal structure, (I) exists as a zwitterion (Fig. 1). All bond lengths and angles in the two independent molecules of (I) (Fig. 1) are normal. The $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1\left(\psi^{1}\right), \mathrm{N} 1-\mathrm{C} 2-$ $\mathrm{C} 1-\mathrm{O} 2\left(\psi^{2}\right), \mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 5\left(\psi^{3}\right)$ and $\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 6$ $\left(\psi^{4}\right)$ torsion angles are $159.9(4),-23.4(5), 157.7$ (4) and $-26.7(5)^{\circ}$, respectively. In one independent molecule, atom

Figure 1
The structure of the asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level (Bruker, 2001).

Received 31 October 2005
Accepted 2 November 2005 Online 10 November 2005
C^{γ} is intermediate between trans and gauche to $\mathrm{N}[\mathrm{N} 1-\mathrm{C} 2-$ $\left.\mathrm{C} 3-\mathrm{C} 4\left(\chi^{1}\right)=-159.8(4)^{\circ}\right]$, while atom C^{δ} is trans to $\mathrm{C}^{\alpha}[\mathrm{C} 2-$ $\left.\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5\left(\chi^{2}\right)=170.5(4)^{\circ}\right]$. In the second molecule, atom C^{γ} is gauche to $\mathrm{N}\left[\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11\left(\chi^{3}\right)=-57.3(5)^{\circ}\right]$ and atom C^{δ} is trans to $\mathrm{C}^{\alpha} \quad\left[\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12\left(\chi^{4}\right)=\right.$ $\left.-175.8(5)^{\circ}\right]$. The $\mathrm{C}-\mathrm{O}$ lengths of the ionized carboxylate group are almost equal (Table 1). In l-glutamic acid (Lehmann \& Nunes, 1980), the ψ^{1} and ψ^{2} torsion angles are -35 and 145° (no s.u. values available), and the bond lengths and angles are similar to those in the title compound.

In the crystal structure, translationally and screw-related molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network parallel to the ac plane (Table 2 and Fig. 2).

Experimental

Compound (I) was synthesized according to the literature procedure of Li \& Wang (1999). Colourless plate-like crystals were grown by slow evaporation of an aqueous solution at room temperature.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{4}$
$M_{r}=175.18$
Monoclinic, $P 2_{1}$
$a=9.691$ (3) \AA
$b=5.2631$ (17) \AA
$c=17.297$ (6) \AA
$\beta=90.752(5)^{\circ}$
$V=882.2(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.319 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1376 reflections
$\theta=3.1-21.6^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Plate, colourless
$0.50 \times 0.49 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART-APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.948, T_{\text {max }}=0.998$
5098 measured reflections
1927 independent reflections 1546 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 11$
$k=-6 \rightarrow 5$
$l=-21 \rightarrow 20$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0984 P)^{2}\right. \\
& +0.285 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.178$
$S=1.04$
1927 reflections
221 parameters
H -atom parameters constrained

Figure 2
Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.89	1.96	2.840 (5)	170
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.89	1.99	2.828 (4)	157
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O}^{\text {iii }}$	0.89	1.93	2.807 (4)	170
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}{ }^{1}{ }^{\mathrm{i}}$	0.89	1.98	2.813 (5)	155
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {i }}$	0.89	1.88	2.741 (4)	161
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.89	2.18	2.950 (4)	144
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots 5^{\text {iv }}$	0.89	2.35	3.178 (4)	154

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y+1, z$; (iii) $-x+2, y+\frac{1}{2},-z+1$; (iv) $-x+1, y-\frac{3}{2},-z+1$.

All H atoms were placed in calculated positions, with $\mathrm{N}-\mathrm{H}$ distances of $0.89 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of $0.96\left(\mathrm{CH}_{3}\right), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.98 \AA(\mathrm{CH})$. They were included in the refinement in the ridingmodel approximation, with isotropic displacement parameters set to $1.2 U_{\text {eq }}$ of the carrier atom ($1.5 U_{\text {eq }}$ for CH_{3} and $\mathrm{NH}_{3} \mathrm{H}$ atoms). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement; the absolute configuration is known from the synthesis (Carey \& Sundberg, 1984).

Data collection: APEX (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2001); software used to prepare material for publication: SHELXTL-NT.

References

Bruker (2001). APEX (Version 5.628), SAINT-Plus (Version 6.45) and SHELXTL-NT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin,USA.
Carey, F. A. \& Sundberg, R. J. (1984). Advanced Organic Chemistry, pp. 64-66. New York, London: Plenum Press.
Lehmann, M. S. \& Nunes, A. C. (1980). Acta Cryst. B36, 1621-1625.
Li, W.-M. \& Wang, X.-M. (1999). Adv. Sci. Tech. 9, 16-19.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, B.-Q. \& Li, Z.-C. (1995). Amino Acids Biotic Resources, 17, 40-45.
Wu, Y.-F., Li, F.-F. \& Jin, L.-F. (2005). Acta Cryst. E61, o3752-o3753.

