organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Fei Wu,^a Feng-Ping Xiao,^a Long-Fei Jin,^a* Fen-Fang Li^a and Xu-Ya Dai^b

^aCollege of Chemistry, Central China Normal Univesity, Wuhan 430079, People's Republic of China, and ^bDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: jlf163@public.wh.hb.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.008 Å R factor = 0.060 wR factor = 0.178 Data-to-parameter ratio = 8.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Ethyl L-glutamate

In the title compound, $C_7H_{13}NO_4$, there are two independent molecules in the asymmetric unit. All bond lengths and angles in the molecules are in normal ranges. The ψ^1 and ψ^2 torsion angles are 159.9 (4) and -23.4 (5)°, respectively, in the first molecule, and the ψ^3 and ψ^4 torsion angles 157.7 (4) and -26.7 (5)°, respectively, in the second. Each of the independent molecules has a different comformation. The translationally and screw-related molecules are connected by N– $H \cdots O$ hydrogen bonds, forming a two-dimensional network parallel to the *ac* plane.

Comment

It has been reported that many esters of amino acids display a broad range of biological activities, *e.g.* as anti-oxidants, bactericides, food additives and cosmetics (Wang & Li, 1995); furthermore, these esters are useful ligands. As part of an ongoing study (Wu *et al.*, 2005), we report here the crystal structure of the title compound, (I).

In the crystal structure, (I) exists as a zwitterion (Fig. 1). All bond lengths and angles in the two independent molecules of (I) (Fig. 1) are normal. The N1-C2-C1-O1 (ψ^1), N1-C2-C1-O2 (ψ^2), N2-C9-C8-O5 (ψ^3) and N2-C9-C8-O6 (ψ^4) torsion angles are 159.9 (4), -23.4 (5), 157.7 (4) and -26.7 (5)°, respectively. In one independent molecule, atom

 \bigcirc 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of the asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level (Bruker, 2001).

Received 31 October 2005 Accepted 2 November 2005 Online 10 November 2005 C^{γ} is intermediate between *trans* and *gauche* to N [N1-C2-C3-C4 (χ^1) = -159.8 (4)°], while atom C^{δ} is *trans* to C^{α} [C2-C3-C4-C5 (χ^2) = 170.5 (4)°]. In the second molecule, atom C^{γ} is *gauche* to N [N2-C9-C10-C11 (χ^3) = -57.3 (5)°] and atom C^{δ} is *trans* to C^{α} [C9-C10-C11-C12 (χ^4) = -175.8 (5)°]. The C-O lengths of the ionized carboxylate group are almost equal (Table 1). In L-glutamic acid (Lehmann & Nunes, 1980), the ψ^1 and ψ^2 torsion angles are -35 and 145° (no s.u. values available), and the bond lengths and angles are similar to those in the title compound.

In the crystal structure, translationally and screw-related molecules are connected by $N-H\cdots O$ hydrogen bonds to form a two-dimensional network parallel to the *ac* plane (Table 2 and Fig. 2).

Experimental

Compound (I) was synthesized according to the literature procedure of Li & Wang (1999). Colourless plate-like crystals were grown by slow evaporation of an aqueous solution at room temperature.

Crystal data

$C_{7}H_{13}NO_{4}$ $M_{r} = 175.18$ Monoclinic, $P2_{1}$ $a = 9.691 (3) \text{ Å}$ $b = 5.2631 (17) \text{ Å}$ $c = 17.297 (6) \text{ Å}$ $\beta = 90.752 (5)^{\circ}$ $V = 882.2 (5) \text{ Å}^{3}$ $Z = 4$	$D_x = 1.319 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1376 reflections $\theta = 3.1-21.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 273 (2) K Plate, colourless $0.50 \times 0.49 \times 0.02 \text{ mm}$
Data collection	
Bruker SMART-APEX CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.948, T_{\max} = 0.998$ 5098 measured reflections	1927 independent reflections 1546 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^{\circ}$ $h = -8 \rightarrow 11$ $k = -6 \rightarrow 5$ $l = -21 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.178$ S = 1.04 1927 reflections 221 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0984P)^{2} + 0.2865P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-O1	1.243 (5)	C8-O5	1.244 (6)
C1-O2	1.258 (5)	C8-O6	1.257 (5)
O1-C1-C2-N1	159.9 (4)	O5-C8-C9-N2	157.7 (4)
O2-C1-C2-N1	-23.4(5)	O6-C8-C9-N2	-26.7(5)
N1-C2-C3-C4	-159.6(4)	N2-C9-C10-C11	-57.5 (5)
C2-C3-C4-C5	170.8 (4)	C9-C10-C11-C12	-175.5 (5)

Figure 2

Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O5^{i}$	0.89	1.96	2.840 (5)	170
$N2 - H2B \cdot \cdot \cdot O2^{ii}$	0.89	1.99	2.828 (4)	157
$N2-H2C \cdot \cdot \cdot O2^{iii}$	0.89	1.93	2.807 (4)	170
$N1 - H1A \cdots O1^{i}$	0.89	1.98	2.813 (5)	155
$N1 - H1B \cdot \cdot \cdot O6^{i}$	0.89	1.88	2.741 (4)	161
$N1 - H1C \cdot \cdot \cdot O6^{iv}$	0.89	2.18	2.950 (4)	144
$N1 - H1C \cdot \cdot \cdot O5^{iv}$	0.89	2.35	3.178 (4)	154
Symmetry codes: (i $-x + 1, y - \frac{3}{2}, -z + 1$.) $x, y - 1, z;$ ((ii) $x, y + 1, z;$	(iii) $-x + 2, y + $	$\frac{1}{2}, -z+1;$ (iv)

All H atoms were placed in calculated positions, with N–H distances of 0.89 Å and C–H distances of 0.96 (CH₃), 0.97 (CH₂) and 0.98 Å (CH). They were included in the refinement in the riding-model approximation, with isotropic displacement parameters set to $1.2U_{eq}$ of the carrier atom ($1.5U_{eq}$ for CH₃ and NH₃ H atoms). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement; the absolute configuration is known from the synthesis (Carey & Sundberg, 1984).

Data collection: *APEX* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-NT* (Bruker, 2001); software used to prepare material for publication: *SHELXTL-NT*.

References

Bruker (2001). APEX (Version 5.628), SAINT-Plus (Version 6.45) and SHELXTL-NT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Carey, F. A. & Sundberg, R. J. (1984). Advanced Organic Chemistry, pp. 64–66.

New York, London: Plenum Press.

Lehmann, M. S. & Nunes, A. C. (1980). Acta Cryst. B36, 1621–1625.

Li, W.-M. & Wang, X.-M. (1999). Adv. Sci. Tech. 9, 16–19.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of

Göttingen, Germany. Wang, B.-Q. & Li, Z.-C. (1995). Amino Acids Biotic Resources, **17**, 40-45.

Wu, Y.-F., Li, F.-F. & Jin, L.-F. (2005). Acta Cryst. E61, 03752–03753.